Creating a Library of Reusable Building Blocks for the Future of HPC
Monday, June 28, 2021 1:15 PM to 1:35 PM · 20 min. (Africa/Abidjan)
Stream#1
Extreme Heterogeneity
Information
Contributors:
Abstract:
Our current HPC ecosystem relies upon Commercial off-the-Shelf (COTS) building blocks to enable cost-effective design by sharing costs across a larger ecosystem. Modern HPC nodes use commodity chipsets and processor chips integrated together on custom motherboards. We are embarking upon a new era for commodity HPC where the chip acts as the “silicon motherboard” that interconnects commodity Intellectual Property (IP) circuit building blocks with open source hardware designs to create a complete integrated System-on-a-Chip (SoC). This approach is still very much COTS, but the commodities are licensable IP for pre-verified circuit designs (the lego-blocks for SoC designs) rather than the chips. It achieves cost-competitiveness because the dominant cost of designing a chip is the cost of verifying the circuit building blocks. The cost benefits derive from the ability to leverage a commodity ecosystem of licensable IP logic components where the non-recurring expense (NRE) cost of designing and verifying a new processor or memory controller design (an IP building block) can be amortized by licensing the technology to myriad embedded applications. The market for licensed circuit IP in the embedded space is much larger marketplace (both in volume and total revenue) than for server chips and the market segment for SoC building blocks is growing at a far faster pace than the current server chip market. This "silicon motherboard" approach combined with chiplets for heterogeneous technology integration can form the basis for continued performance scaling as Moore's Law slows down.
Abstract:
Our current HPC ecosystem relies upon Commercial off-the-Shelf (COTS) building blocks to enable cost-effective design by sharing costs across a larger ecosystem. Modern HPC nodes use commodity chipsets and processor chips integrated together on custom motherboards. We are embarking upon a new era for commodity HPC where the chip acts as the “silicon motherboard” that interconnects commodity Intellectual Property (IP) circuit building blocks with open source hardware designs to create a complete integrated System-on-a-Chip (SoC). This approach is still very much COTS, but the commodities are licensable IP for pre-verified circuit designs (the lego-blocks for SoC designs) rather than the chips. It achieves cost-competitiveness because the dominant cost of designing a chip is the cost of verifying the circuit building blocks. The cost benefits derive from the ability to leverage a commodity ecosystem of licensable IP logic components where the non-recurring expense (NRE) cost of designing and verifying a new processor or memory controller design (an IP building block) can be amortized by licensing the technology to myriad embedded applications. The market for licensed circuit IP in the embedded space is much larger marketplace (both in volume and total revenue) than for server chips and the market segment for SoC building blocks is growing at a far faster pace than the current server chip market. This "silicon motherboard" approach combined with chiplets for heterogeneous technology integration can form the basis for continued performance scaling as Moore's Law slows down.