Towards carbon neutrality with the COMPASsCO2 solar project

Towards carbon neutrality with the COMPASsCO2 solar project

Useful Links

Information

The COMPASsCO2 project gathers different companies, research centers and universities in Europe to investigate a new type of Central Solar Power (CSP) plant with tower. This research and development project aims to achieve the challenges of decarbonization by 2050 as defined by the European Union. The outputs of the COMPASsCO2 (Components’ and Materials’ Performance for Advanced Solar Supercritical CO2 Powerplants) investigations will pave the way to the use of supercritical CO2 (s-CO2) in CSP plants as a working fluid in a thermo-dynamic cycle for electricity production. Charly Rensonnet, Development Engineer for John Cockerill Solar & Thermal Storage : “The s-CO2 is a carbon dioxide fluid phase obtained by maintaining it above its critical temperature and pressure which are respectively 31°C and 74 bars. In that state, the carbon dioxide has both liquid and gaseous features: a high density like liquids and a low viscosity like gases which makes it an ideal candidate for thermal energy transport.” The thermodynamics cycle will be supplied in thermal energy thanks to a solar tower using solid particles in spite of the common molten salts. The solid particles will be heated up with concentrated solar rays in a receiver located at the top of the tower. The most valuable asset of replacing liquid salts with solid particles is the ability to heat them up to 1000°C, whereas the salts are limited at 565°C. “This results in an increase of the plant global efficiency and an increase of the solar energy exploited. The missing link between the solar tower and the s-CO2 cycle is a heat exchanger transferring thermal energy from the particles to the s-CO2.” The consortium will therefore develop such a heat exchanger while keeping the spotlight on the development of relevant mate-rials that can withstand very high temperatures and abrasion (because of the moving particles).

Log in